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1 Additional Evaluation

Here, we present additional experimental results with HOGraspNet that are not
included in the main paper. We provide detailed descriptions of the evaluation
setups and the quantitative results across each split type we defined. Addition-
ally, we show qualitative comparisons between HOGraspNet and the publicly
available datasets [19,17,4].

1.1 Evaluation Setup

Split Protocol. The S0 split follows the traditional sequence split, where the
first trial of each subject and grasp scenario is assigned to the test set. For the
S1 split, the 99 subjects are randomly divided into train and test sets at a ratio
of roughly 7:3. For the S2 split, the data from the four camera views are divided
at a ratio of 3:1. Each view corresponds to a different side of the subjects (back,
left, front, and right), and the right-side camera is selected as the test set. In
the S3 split, 30 objects are divided into train and test sets at a ratio of 23:7,
ensuring that all grasp classes are represented in the train set. The cumulative
grasp classes for the objects in both sets are shown in Fig. 1. Lastly, the S4
split separates the total of 28 grasp classes at a ratio of 6:1, with four classes
identified as Intermediate (please refer to Fig. 11) assigned to the test set.
Baseline Network. We report the hand reconstruction results using HFL-
net [12] trained on each split. We train each network for 5 epochs using the
Adam optimizer with a learning rate of 1e-4 and a decaying gamma of 0.9 per 2
epochs, while other parameters are set to the default values.

1.2 Evaluation Results

Hand Pose Estimation. We summarize the hand estimation results in Fig. 2.
The S0 split exhibits the highest performance, while the S2 split demonstrates
the lowest, with S4 showing the second lowest performance. As the S0 partitions
the dataset only by sequences, it generally shares common pose spaces between
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Split
Label

Seq(4) Sub(99) View(4) Obj(30) GraspTax(28)

S0 U(3:1) S S S S

S1 S U(70:29) S S S

S2 S S U(3:1) S S

S3 S S S U(23:7) S

S4 S S S S U(6:1)

Fig. 1. (left) Detailed experimental protocols (train:test splits). U denotes
unseen factor, S denotes seen factors. We consider sequence, subject, view, object, and
grasp taxonomy as split factors. (right) Distribution of grasp taxonomy in S3.
All grasp classes are present in S3 (unseen object) train set.

Split
type

PAMPJPE (↓)
(mm)

AUC (↑)

S0 8.12 0.838
S1 8.55 0.829
S2 10.50 0.790
S3 9.08 0.819
S4 10.09 0.798

Fig. 2. (left) 3D hand pose estimation results, (right) PCK curve for each
split type.

the train and test sets, which results in the lowest pose error. Conversely, the
S2 split with viewpoint exhibits the lowest performance. As our dataset con-
tains 4 sparse viewpoints (back, left, front, and right) following the existing
literature [10], the RGB frames among different viewpoints may exhibit high
disparity, potentially making the network generalization difficult. Thus, we have
anticipated that S2 would be the most challenging split due to the unseen cam-
era view in the test set. The second lowest performance is shown by the S3 split
categorized by grasp taxonomy. As mentioned earlier, there are distinct varia-
tions in hand poses among grasp taxonomies, which results in inconsistencies in
the performance of the trained model on the test set. On the other hand, in the
S1 split with unseen subjects, shape variations exist between the train and test
sets. However, since the same grasp guidelines were provided to all subjects, dif-
ferences in hand poses among subjects are relatively small, resulting in relatively
good joint pose estimation performance. The S3 split for unseen objects, which
includes all grasps but not all objects, shows relatively lower performance due to
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Table 1. 6D object pose estimation results in ADD-0.1D(↑) per object. We
used HFL-Net [12] trained on each split.

S0 S1 S2 S3 S4 avg S0 S1 S2 S3 S4 avg

1: cracker box 51.46 39.55 22.80 - - 37.94 16: golf ball 1.29 1.47 0.06 - - 0.94
2: potted meat can 19.19 12.95 8.18 0.07 - 10.10 17: credit card 2.15 3.31 1.17 - 1.97 2.15
3: banana 14.43 20.12 0.55 - - 11.70 18: dice 0.0 0.02 0.04 - 0.04 0.03
4: apple 11.36 14.57 1.40 0.24 - 6.89 19: disk lid 30.61 32.12 1.98 - - 21.64
5: wine glass 22.96 15.64 1.76 - - 13.46 20: smartphone 12.81 16.40 2.75 0.06 9.69 7.93
6: bowl 26.78 19.43 6.34 0.03 22.82 14.07 21: mouse 12.13 12.16 2.42 - - 8.90
7: mug 25.23 21.36 3.60 - - 16.73 22: tape 9.61 1.75 7.78 - 5.04 6.05
8: plate 23.76 29.73 1.52 - 25.81 20.21 23: master chef can 29.51 28.15 16.87 - - 24.85
9: spoon 15.64 19.07 12.87 - 16.70 16.08 24: scrub cleanser bottle 52.61 40.23 42.35 - - 45.07
10: knife 12.92 10.97 3.95 5.31 - 8.29 25: large marker 7.65 5.05 3.19 - - 5.30
11: small marker 6.17 6.91 3.53 1.39 - 4.50 26: stapler 26.57 26.97 6.80 - - 20.12
12: spatula 2.15 20.64 0.94 0.04 - 12.10 27: note 43.62 61.99 0.69 - 41.92 37.06
13: flat screwdriver 13.99 12.08 0.46 - - 8.85 28: scissors 20.87 14.66 1.26 - 7.40 11.05
14: hammer 28.24 30.79 1.98 - - 20.34 29: foldable phone 8.68 8.00 0.78 - 6.28 5.94
15: baseball 7.24 5.77 2.75 - - 5.56 30: cardboard box 6.44 5.14 1.55 - - 4.38

Avg S0 : 18.86 S1: 18.10 S2: 5.15 S3: 1.02 S4: 13.76

the characteristics of the HFL baseline model, which estimates hand pose given
the object information.

Object Pose Estimation. We show the object pose estimation results in
Tab. 1. Recall that S3 is an unseen object split and S4 is an unseen grasp
taxonomy split. However, S4 does not consist of all objects in the training set
due to the fixed grasps per object, leading to several invalid object poses in both
splits(denoted as -). Overall, the baseline achieves the best object pose estimation
performance on the S0 split, which has a minimal disparity between the train
and test sets. Notably, small objects like dice, golf balls, and credit cards, which
are mostly absent in existing datasets, show the lowest performance due to sig-
nificant occlusion caused by the interaction with the hand. Furthermore, objects
with intricate textures, such as cracker boxes and scrub cleanser bottles, gener-
ally yield high accuracy due to providing reliable cues for the network model.
Unlike the object pose estimation experiment in the main paper (Sec. 4.3), this
experiment does not account for the object’s symmetry during the metric calcu-
lation, resulting in lower accuracy for symmetric objects like markers, cardboard
boxes, and tape.

Qualitative Comparison Between Datasets. Fig. 3 shows the qualitative
results of randomly sampled data from each recent dataset. Minor discrepancies
between real and rendered meshes are found across examined datasets, with
overall annotation quality being supposed to be consistent. Additionally, mesh
discrepancies in the wrist area are observed in several samples, likely resulting
from inherent limitations in the representation of the MANO [16] hand model.

Refinement results on noisy hand-object contact maps and poses Re-
garding in-the-wild experiments, recent works train a generative prior on 3D
shapes and use it to regularize the plausibility of poses estimated from in-the-
wild images, achieving new state-of-the-art accuracy [20,11]. The diversity in
the training 3D shape set is the key to building a strong prior. We thus believe
that HOGraspNet can play an important role in this direction. Although this
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Fig. 3. Qualitative comparison of random samples of different datasets. (a)
HOGraspNet (ours). (b) OakInk [19]. (c) SHOWMe [17]. (d) DexYCB [4].

Fig. 4. Refinement results of our prior model trained on HOGraspNet on
noisy hand-object contact maps and poses.

was not the original scope of our dataset collection work, we report the prelim-
inary results following the experimental setup in [9], where we trained a prior
model of hand-object shapes represented as contact maps and used it to refine
the noisy hand-object poses (e.g., estimated from images). Fig. 4 shows that the
prior model trained on HOGraspNet can successfully refine the noisy contacts
and enforces more plausible pose estimation. We observed that incorporating our
per-sample grasp type (which is not provided by most of the existing datasets)
further improves the performance of the prior model, increases the hand and
object contact F1 scores by 6% and 5%, respectively. We will further investigate
this direction as future work.
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2 Additional Survey on Interaction Datasets

In this section, we provide more details on the existing hand-object interaction
datasets discussed in Sec. 2 in the main paper. We then report the missing
grasp types in the existing datasets [10,4,3] to show that ours capture more
comprehensive grasps.

More Details on Hand-Object Datasets. FPHA [8] captures first-person
dynamic hand actions interacting with 3D objects. It consists of over 100K RGB-
D frames of 1.1K action samples across 45 categories by manipulating 26 objects.
The hand joint is annotated using six magnetic sensors and inverse kinemat-
ics. However, the FPHA does not fully provide the 6D object pose, and the
presence of magnetic sensors on the hand corrupts the RGB-D images. YCB-
Affordance [5] consists of 133K annotated frames featuring over 28M synthetic
grasps to depict diverse human grasp affordances. It has manual annotations of
367 different hand-object poses, according to the 33-grasp taxonomy [7]. These
hand poses are rendered upon the YCB-Video [18] dataset. However, YCB-
Affordance captures less diverse grasp configurations since the hand poses are
replicated through the rotation symmetry of the object. Also, the synthetic im-
ages may lead to less effective network training due to the discrepancy between
the synthetic and real image domains. ContactDB [1] captures detailed hand-
object contact of grasping using a thermal camera. It consists of 3.7K 3D meshes
of 50 household objects textured with contact maps and 375K frames of syn-
chronized RGB-D+thermal images. ContactPose [2] expands ContactDB by
including 3D joint locations and multi-view RGB-D grasp images. It has 2.3K
unique grasps of 25 household objects by 50 participants and more than 2.9M
RGB-D grasp images. However, ContactPose does not support dynamic grasp,
where the thermal camera can only capture one contact map for each inter-
action sequence. EPIC-KITCHEN [6] is a large-scale egocentric hand-object
dataset. It captures the kitchen activities of 32 identities of 10 different nation-
alities. However, it does not provide mesh annotations; thus, it cannot be used
to train hand-object dense shape reconstruction networks. HOI4D [13] cap-
tures 4D egocentric category-level human-object interaction. HOI4D consists of
2.4M RGB-D egocentric video frames over 4K sequences collected by 4 partici-
pants interacting with 800 object instances from 16 categories over 610 indoor
rooms. HOI4D provides annotations for frame-wise panoptic segmentation, mo-
tion segmentation, 3D hand pose, rigid and articulated object pose, and action
segmentation. Although diverse objects were obtained, it is limited to the 16
types of object categories, which do not cover full taxonomies (e.g., grasps that
can only be acquired through flat or small objects).

Missing Grasp Classes in Existing Datasets. In Fig. 5, we present a list of
grasp classes that are absent in the existing datasets (MOW [3], HO3D [10], and
DexYCB [4]), which we manually identified. This further demonstrates that our
dataset more comprehensively captures hand grasps, covering more grasp types.



6 Cho et al.

Fig. 5. Missing grasp types in the existing datasets (MOW [3], HO3D [10],
and DexYCB [4]).

3 Details of Annotation Procedure

In this section, we provide more details on our camera calibration (Sec. 3.1),
segmentation (Sec. 3.2), and hand-object model fitting procedures (Sec. 3.3).

3.1 Camera Calibration

We use 4 RGB-D cameras to record the frames and 8 IR cameras to acquire ob-
ject 6D poses. The RGB-D cameras and the IR cameras are temporally synchro-
nized with electric signals, and we manually align the starting frames between
them with a blinking LED. The transformations among the RGB-D cameras
are calibrated with a checkerboard and a T-shaped wand with optical markers
for IR cameras. To align coordinates between the RGB-D and IR cameras, three
optical markers are placed on the checkerboard, which is positioned on the table.
Although the capture system remains fixed, this calibration process is performed
for each sequence.
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Fig. 6. (left) T-shaped wand. IR cameras capture the visible optical markers of a
traversing wand. (right) Checkerboard. Optical markers are placed at the end of
red and green lines.

Fig. 7. Examples of our pseudo GT segmentation masks and background
augmentation.

3.2 Segmentation

The quality of the pseudo-ground truth in our annotation pipeline is crucially
tied to the final annotation quality. The hand and object masks were improved
using a fine-tuned segmentation model, with examples in Fig. 7. These results
demonstrate plausible masks for each object, achieved through tuning the model
with our manually annotated segmentation masks.

3.3 MANO and Object Model Fitting

In this subsection, we provide more details on our MANO [16] and object model
fitting process discussed in Sec. 3.5 in the main paper. Recall that our goal
is to align MANO hand and object mesh models with RGB-D data captured
from multiple cameras based on the initial poses of the hand and the object.
Here, the MANO model is parameterized by pose parameter θ ∈ R48 and shape
parameter β ∈ R10. The object model is represented using the standard 6D pose
representation ϕ ∈ R6, consisting of a 3D rotation matrix and a 3D translation
vector.



8 Cho et al.

Multi-view Multi-frame Gradual Hand-Object Model Fitting. To an-
notate hand and object parameters, we formulate an optimization problem with
the objective discussed in the main paper (Eq. 1). To avoid local minima, we
gradually fit the partial hand pose parameters across several stages. Through
preliminary experiments, we found that optimizing the hand pose parameters
starting from the wrist outward yielded promising results. With this insight, we
perform the optimization progressively in the subsequent order: (1) global hand
orientation, (2) partial hand poses extended from the wrist, and (3) the full hand
and object parameters.
Details on Loss Terms. We now provide the details on each loss term in Eq. 1
in the main paper. L2D

h is 2D hand joint loss, which is defined as the L2 distance
between pseudo GT 2D joint ji and 2D projection Πc of the models 3D joint
j̃3Di over camera view c with the visibility vi:

L2D
h = λ2D

h

∑
c

21∑
i=1

∥∥∥jci −Πc(j̃3Di )
∥∥∥
2
· vi. (1)

L3D
o is 3D object marker loss, which is also defined as the L2 distance between

the 3D marker position m3D
n and the corresponding vertex position of object

model vn:

L3D
o = λ3D

o ·
∑
c

3∼5∑
n=1

∥∥vcn −Πc(m3D
n )

∥∥
2
. (2)

Lseg is segmentation loss computed for hand and object via the L1 distance

between predicted mask M and the rendered mask from mesh model M̃ over
the camera view c:

Lseg = λseg ·
∑
c

∥∥∥M c − M̃ c
∥∥∥
1
. (3)

Ldepth is depth loss, which is also computed as the L1 distance between

captured depth image D and the rendered depth map D̃ but for both hand and
object:

Ldepth = λdepth ·
∑
c

∥∥∥Dc − D̃c
∥∥∥
1
. (4)

Following [21], we also incorporate the pose and shape regularize Lreg to
the MANO model to regularize the hand model and additional L2 norm be-
tween current hand model parameter θt, βt and previous parameter θt−1, βt−1

for temporal consistency:

Lreg = λpose ·
∥∥∥θ̃∥∥∥

2
+λshape ·

∥∥∥β̃∥∥∥
2
+λtemporal ·(∥θt − θt−1∥2+∥βt − βt−1∥2). (5)

To additionally regularize the fitted hand and object meshes to be physi-
cally plausible, we incorporate a regularization term Lphy, which is designed
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as a weighted sum of penetration loss and contact loss: Lphy = λpenLpen +
λcontactLcontact. For penetration loss λpen, we use a vertex normal projection-
based technique used in [10]. Let Vh ∈ RNh×3 and Vo ∈ RNo×3 be the vertex
matrices of hand and object, respectively. Then, the penetration loss Lpen is
defined as:

Lpen =
∑

i,j ∈S(Vh,Vo)

max(−(nj
o)

T Vi
h −Vj

o, 0), (6)

where S(·, ·) is a function that returns the hand vertex index i ∈ N and its nearest
object index j ∈ N in the Euclidean space, and nj

o denotes a normal vector at
j-th object vertex. Equation 6 projects a vector joining the nearest vertices of
the hand and object onto the normal vector at the object to approximate the
amount of penetration in a differentiable manner.

Lpen enforces the penetrated hand and object surfaces to repel each other,
however, it is also important to regularize the closely located hand and object
surface regions to be in actual contact to model physically plausible grasps. We
use contact loss Lcontact that aims to minimize the distances between hand and
object vertices below a distance threshold τ :

Lcontact =
∑

i,j ∈S(Vi
h,V

j
o)

∥∥Vi
h −Vj

o

∥∥
2
, where d(Vi

h,V
j
o) < τ. (7)

In the above equation, d(·, ·) denotes a distance function1. Note that we set τ as
8mm in our experiments.

Finally, we implement the overall fitting process using PyTorch[14] to mini-
mize:

θ̂, β̂, ϕ̂ = argmin
θ̃,β̃,ϕ̃

(L(θ̃, β̃, ϕ̃)). (8)

4 Taxonomies and Statistics for HOGraspNet

In this section, we report additional statistics of the HOGraspNet and the details
of the taxonomies. We organized the subject’s gender with a ratio of 50:49 for
males to females. The age distribution is also evenly dispersed, with proportions
of 23%, 26%, 25%, and 25% across 20-year intervals from age 0 to 80. Hand sizes,
measured from the wrist to the tip of the middle finger, are distributed as shown
in Fig. 8. Fig. 9 shows each 3 grasp types for each of the 30 types of objects,
resulting in a total of 90 interaction scenarios. We also show the data samples
from HOGraspNet for each combination in Fig. 10. Lastly, the hand grasping
and object taxonomies in Fig. 4 in the paper are provided on a larger scale in
Fig. 11 and Fig. 12.

1 We use point to mesh distance function in Pytorch3D [15].
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Fig. 8. Additional statistics of HOGraspNet
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Fig. 9. Grasp classes for each object.
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Fig. 10. Samples of grasps per objects. A total of 90 interaction instances com-
prising 3 classes of grasps across 30 objects.

Fig. 11. Hand grasping taxonomy.
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Fig. 12. Object taxonomy.
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